RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2014

THIRD YEAR

Date : 24/05/2014 Time : 11 am - 2 pm **MATHEMATICS** (Honours)

Paper : VIII

Full Marks : 70

[6]

[Use a separate Answer book for each Group]

Group - A

[Answer any five questions]

- 1. If a variable system of coplanar forces have constant moments about two fixed points on the plane, prove that the resultant passes through another fixed point. [6]
- 2. State and prove the principle of virtual work for any system of coplanar forces acting on a rigid body. [6]
- 3. A solid hemisphere is supported by a string fixed to a point on its rim and to a point on a smooth vertical wall with which the curved surface of the hemisphere is in contact. If θ , ϕ are the inclinations

of the string and the plane base of the hemisphere to the vertical, prove that $\tan \phi = \frac{3}{6} + \tan \theta$.

- 4. A square Lamina rests with its plane perpendicular to a smooth wall, one corner being attached to a point in the wall by a fine string of length equal to the side of the square. Find the position of equilibrium and show that it is stable. [6]
- 5. A force parallel to the axis of z acts at the point (a,0,0) and an equal force perpendicular to the axis of z acts at the point (-a,0,0). Show that the central axis of the system lies on the surface $z^2(x^2 + y^2) = (x^2 + y^2 ax)^2$. [6]
- 6. A perfectly rough plane is inclined at an angle α to the horizon. Show that the least eccentricity of the ellipse which can rest on the plane is $\sqrt{\frac{2\sin\alpha}{1+\sin\alpha}}$. [6]
- 7. A heavy uniform string rests on the upper surface of a rough vertical circle of radius *a*, and partly hangs vertically. If one end be at the highest point of the circle, show that the greatest length that can

hang freely is
$$\frac{2a\mu + (\mu^2 - 1)ae^{\frac{\mu\pi}{2}}}{1 + \mu^2}$$
, where μ is the coefficient of friction. [6]

Obtain the general Cartesian equations of equilibrium of a string under coplanar forces. Using it find the form of equilibrium of a string hanging under gravity when mass per unit length varies as the tension there.

Group - B

[Answer any two questions]

9.	a) What do you mean by assembly language?	[3]
	b) Describe storage classes.	[4]
	c) A C program contains the following declaration :	[3]
	static float table [2][3] = {	

$$\{1 \cdot 1, 1 \cdot 2, 1 \cdot 3\}$$

 $\{2 \cdot 1, 2 \cdot 2, 2 \cdot 3\}$

- i) What is the meaning of table?
- ii) What is the meaning of (table + 1)?

- iii) What is the meaning of *(table +1)?
- iv) What is the meaning of (*(table + 1)+1)?
- v) What is the value of *(*(table+1)+1)?
- vi) What is the value of *(*(table)+1)?
- 10. a) 50 floating-point data is stored in a data file stand.dat. Write a C program to evaluate the standard deviation of the stored data.
 - b) Two integer type arrays contain two matrices, one of order 4×4 and the other of order 4×5 , in a data file mat.dat. Write an efficient C program to determine the product of the two matrices and store the result in an output file.
- 11. a) In a Boolean algebra (B, +, \cdot , '), prove that for all a, b, c \in B, if a+b = a + c and $a \cdot b = a \cdot c$ then $\mathbf{b} = \mathbf{c}$.
 - b) Find the disjunctive normal form of the Boolean function f(x,y,z) such that f(x,y,z) = 1 if and only if two or more of the variables are 1. [3]
 - c) A committee consists of the President, Vice President, Secretary and Treasurer. A proposal is approved if and only if it receives a majority vote or the vote of the President plus one other member. Each member approves the proposal by pressing a button attached to their seats. Design a switching circuit controlled by the buttons which allows current to pass if an only if the proposal is approved.

Group – C

[Answer either Unit I or Unit – II]

Unit - I

[Answer <u>any two</u> questions]

12. a) Prove that δ_i^i is a mixed tensor of rank two.

b) Find g and g^{ij} corresponding to the metric $(ds)^2 = 3(dx^1)^2 + 2(dx^2)^2 + 4(dx^3)^2 - 6dx^1 dx^3$. [4]

- c) Show that $\frac{\partial g^{ik}}{\partial x^{j}} = -g^{hk} \begin{cases} i \\ hi \end{cases} g^{hi} \begin{cases} k \\ hi \end{cases}$. [4]
- 13. a) The components of a contravariant tensor in the co-ordinate system x^i are $A^{11} = 4$, $A^{12} = A^{21} = 0$, $A^{22} = 7$. Find its components in the coordinate system \overline{x}^i , where $\overline{x}^1 = 4(x^1)^2 - 7(x^2)^2$, $\overline{\mathbf{x}}^2 = 4\mathbf{x}^1 - 5\mathbf{x}^2.$ [5]
 - b) If A_i are the components of a covariant vector, then show that $\frac{\partial A_i}{\partial x^j}$ are not the components of a

tensor but
$$\frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i}$$
 are the components of a tensor. [5]

14. a) Prove that the fundamental tensor g_{ij} is a covariant tensor of order two. [4] b) If a tensor A_{ijkl} is symmetric in the first two indices from the left and skew-symmetric in the second and fourth indices from the left, show that $A_{iikl} = 0$. [3]

c) If
$$A^{ijk}$$
 is a skew-symmetric tensor, show that $A^{ij\ell}_{,\ell} = \frac{1}{\sqrt{g}} \frac{\partial(\sqrt{g}A^{ijk})}{\partial x^k}$. [3]

<u>Unit – II</u>

[Answer <u>any two</u> questions]

15. a) Let $\alpha: I \to \mathbb{R}^2$ be a regular plane Curve. Let $[a,b] \subseteq I$ such that $\alpha(a) \neq \alpha(b)$. Prove that there exists some $t_0 \in (a, b)$ such that the tangent line of α at t_0 is parallel to the segment of the straight line joining $\alpha(a)$ with $\alpha(b)$.

[2]

[4]

[5]

[5]

[3]

b) Compute the curvature and torsion for the Curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ given by

$$\alpha(t) = \left(a\cos\frac{t}{\sqrt{a^2 + b^2}}, a\sin\frac{t}{\sqrt{a^2 + b^2}}, \frac{bt}{\sqrt{a^2 + b^2}}\right) \text{ with } a > 0 \text{ and } b > 0.$$

- c) Write down the Serret-Frenet equation for Space Curve.
- 16. If $O \subseteq \mathbb{R}^3$ is open, $f: O \to \mathbb{R}$ is a differentiable function and a is a regular value of f belonging to its image

[4+3+3]

[4+3+3]

- a) Prove that $S = f^{-1}(\{a\})$ is a surface.
- b) Prove that $T_PS = ker(df)_P$.
- c) Let $f: S \to \mathbb{R}^n$ be a differentiable map where S is a surface and S is connected. If $(df)_p = 0 \forall p \in S$ then show that f is constant.
- 17. a) Let S be a surface and $X: U \to \mathbb{R}^3$ be a parametrization of S. Then show that there exits unit normal field defined on the open set V = X(U).
 - b) Let S be the surface given by $S = \{(x, y, z) \in \mathbb{R}^3 | 2z = x^2 + y^2\}$. Find the Gauss Curvature and the Mean Curvature of S. [4+(3+3)]

ち 後 の 後 の